2,795 research outputs found

    Space-Time Symmetries of Quantized Tensionless Strings

    Full text link
    The tensionless limit of the free bosonic string is space-time conformally symmetric classically. Requiring invariance of the quantum theory in the light cone gauge tests the reparametrization symmetry needed to fix this gauge. The full conformal symmetry gives stronger constraints than the Poincar\'e subalgebra. We find that the symmetry may be preserved in any space-time dimension, but only if the spectrum is drastically reduced (part of this reduction is natural in a zero tension limit of the ordinary string spectrum). The quantum states are required to be symmetric ({\it i.e.} singlets) under space-time diffeomorphisms, except for the centre of mass wave function.Comment: 15pp, plain latex, USITP-92-

    Palatini Variational Principle for NN-Dimensional Dilaton Gravity

    Get PDF
    We consider a Palatini variation on a general NN-Dimensional second order, torsion-free dilaton gravity action and determine the resulting equations of motion. Consistency is checked by considering the restraint imposed due to invariance of the matter action under simple coordinate transformations, and the special case of N=2 is examined. We also examine a sub-class of theories whereby a Palatini variation dynamically coincides with that of the "ordinary" Hilbert variational principle; in particular we examine a generalized Brans-Dicke theory and the associated role of conformal transformations.Comment: 16 pages, LaTe

    ADE-Quiver Theories and Mirror Symmetry

    Get PDF
    We show that the Higgs branch of a four-dimensional Yang-Mills theory, with gauge and matter content summarised by an ADE quiver diagram, is identical to the generalised Coulomb branch of a four-dimensional superconformal strongly coupled gauge theory with ADE global symmetry. This equivalence suggests the existence of a mirror symmetry between the quiver theories and the strongly coupled theories.Comment: 8 pages, 4 figures. Talk delivered by UL at D.V. Volkov Memorial Conference, July 25-29, 2000, Kharkov, to be published in the proceeding

    Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures

    Full text link
    We describe the conditions for extra supersymmetry in N=(2,2) supersymmetric nonlinear sigma models written in terms of semichiral superfields. We find that some of these models have additional off-shell supersymmetry. The (4,4) supersymmetry introduces geometrical structures on the target-space which are conveniently described in terms of Yano f-structures and Magri-Morosi concomitants. On-shell, we relate the new structures to the known bi-hypercomplex structures.Comment: 20 pages; v2: significant corrections, clarifications, and reorganization; v3: discussion of supersymmetry vs twisted supersymmetry added, relevant signs corrected

    Properties of hyperkahler manifolds and their twistor spaces

    Full text link
    We describe the relation between supersymmetric sigma-models on hyperkahler manifolds, projective superspace, and twistor space. We review the essential aspects and present a coherent picture with a number of new results.Comment: 26 pages. v2: Sign mistakes corrected; Kahler potential explicitly calculated in example; references added. v3: Published version--several small clarifications per referee's reques

    Generalized Kahler Geometry from supersymmetric sigma models

    Full text link
    We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.Comment: 18 page

    The Semi-Chiral Quotient, Hyperkahler Manifolds and T-duality

    Full text link
    We study the construction of generalized Kahler manifolds, described purely in terms of N=(2,2) semichiral superfields, by a quotient using the semichiral vector multiplet. Despite the presence of a b-field in these models, we show that the quotient of a hyperkahler manifold is hyperkahler, as in the usual hyperkahler quotient. Thus, quotient manifolds with torsion cannot be constructed by this method. Nonetheless, this method does give a new description of hyperkahler manifolds in terms of two-dimensional N=(2,2) gauged non-linear sigma models involving semichiral superfields and the semichiral vector multiplet. We give two examples: Eguchi-Hanson and Taub-NUT. By T-duality, this gives new gauged linear sigma models describing the T-dual of Eguchi-Hanson and NS5-branes. We also clarify some aspects of T-duality relating these models to N=(4,4) models for chiral/twisted-chiral fields and comment briefly on more general quotients that can give rise to torsion and give an example.Comment: 31 page

    Hamiltonian BRST Quantization of the Conformal String

    Full text link
    We present a new formulation of the tensionless string (T=0T= 0) where the space-time conformal symmetry is manifest. Using a Hamiltonian BRST scheme we quantize this {\em Conformal String} and find that it has critical dimension D=2D=2. This is in keeping with our classical result that the model describes massless particles in this dimension. It is also consistent with our previous results which indicate that quantized conformally symmetric tensionless strings describe a topological phase away {}from D=2D=2. We reach our result by demanding nilpotency of the BRST charge and consistency with the Jacobi identities. The derivation is presented in two different ways: in operator language and using mode expansions. Careful attention is payed to regularization, a crucial ingredient in our calculations.Comment: 33pp (LaTeX), USITP-94-0

    Classical and Quantized Tensionless Strings

    Full text link
    {}From the ordinary tensile string we derive a geometric action for the tensionless (T=0T=0) string and discuss its symmetries and field equations. The Weyl symmetry of the usual string is shown to be replaced by a global space-time conformal symmetry in the T→0T\to 0 limit. We present the explicit expressions for the generators of this group in the light-cone gauge. Using these, we quantize the theory in an operator form and require the conformal symmetry to remain a symmetry of the quantum theory. Modulo details concerning zero-modes that are discussed in the paper, this leads to the stringent restriction that the physical states should be singlets under space-time diffeomorphisms, hinting at a topological theory. We present the details of the calculation that leads to this conclusion.Comment: 34 pages, Latex, USITP 93-1

    Generalized Kahler geometry and gerbes

    Full text link
    We introduce and study the notion of a biholomorphic gerbe with connection. The biholomorphic gerbe provides a natural geometrical framework for generalized Kahler geometry in a manner analogous to the way a holomorphic line bundle is related to Kahler geometry. The relation between the gerbe and the generalized Kahler potential is discussed.Comment: 28 page
    • 

    corecore